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 Test and Experimentation Designs 

 

I. ANALYSIS OF VARIANCE 

 

Generally, OT&E and Experimentation involve the comparison of more than two 
population means based on sample statistics.  The technique usually employed to solve 
such problems is called ANALYSIS OF VARIANCE.  Fundamentally, analysis of variance 
(hereafter, abbreviated ANOVA) is just what the name implies - partitioning the variance of 
the dependent variable from an experiment into parts to test whether or not certain factors 
(independent variables) that were introduced into the design actually affect its value.  For 
example, is the miss-distance of a missile system affected by the particular aircraft which 
releases it?  Does the type of radar aboard an aircraft affect the time of target acquisition?  
In each case, there is interest in testing whether the factor(s) under study significantly 
affect the measured response variable when compared to the random variation in the 
process. 

When the proper conditions and assumptions are present, the ANOVA technique is a 
powerful technique to use for statistical problems that involve the comparison of more than 
two means.  Basically, the efficiency of ANOVA is derived by utilizing all the observations 
across all combinations of test factors to estimate the EXPERIMENTAL ERROR or random 
error inherent in the process.  The F-test or variance ratio is used to compare the 
estimated variability attributable to a test factor to the estimated error and, subsequently, 
test for a significant effect. 

Various ANOVA Models.  There are numerous types of ANOVA models, each 
incorporates particular assumptions that describe the manner in which the test is structured 
and conducted.  An overview of several of the principal types of ANOVA models are 
discussed below: 
 
A. Single-Factor.   In discussing the single factor ANOVA model, many of the principles 
involved apply to more complex designs with only slight, but important, modifications.  The 
SINGLE-FACTOR EXPERIMENT involves the test to see whether there is a significant 
difference between the levels of one factor.  For example, consider the experiment where 
there is interest in determining whether there is a difference between four aircraft types for 
their effect on the radial miss-distance of an identically-launched missile at a target.  Table 
1 shows the data for this example. 
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 TABLE 1.  RADIAL MISS-DISTANCE 

 Aircraft Type 

 
  I    II    III    IV 

 
51    59    40    37 
50    56    41    34 
57    45    40    40 
54    50    34    38 

  55    51    38    36 
 

 
The order in which the 20 observations were taken was completely random.  

Therefore, the example problem has a COMPLETELY RANDOMIZED DESIGN.  The 
model for the design is given by Equation (1): 
 

 Yij = μ + αj + εij                   (1) 

 
where Yij is the value for the dependent variable for the ith observation within the jth aircraft 

type, αj represents the effect for the jth aircraft type, and εij represents the random error 

that is the present in the ith observation within the jth aircraft type.  The model has the 
following assumptions: 
 

(1) The effects are additive as shown by Equation (1). 

(2) The error term εij is a Normally and independently distributed random effect.  It 

has mean value zero and its variance is the same for each level (the four 
aircraft types in the example) of the test factor. 

(3) μ is a fixed (but unknown) parameter for the population means. 
(4) The sum of the factor level effects add to zero.  This may be expressed by  

Equation (2):   

    
1

0
J

j

j

α
=

=∑       (2) 

        where;    J = 4 (the number of aircraft types) in our example.   
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 If the J levels of the factor are chosen at RANDOM, the αj are assumed Normally and 

independently distributed with mean zero and with a common variance σα
2.  When the αj 

are set at pre-determined levels, they are called FIXED and Equation (2) also applies. 

The hypothesis that is tested in the single factor design is Ho:αj = 0 for all j.  If this 

hypothesis is not rejected, then it is assumed that there is no effect introduced by the type 

of aircraft and that each observation Yij is made up of a mean μ and a random error εij. 

 
The ANOVA TABLE for the example is shown in Table 2.  The sources of variation 

are the "between aircraft types effects" and the experimental error.  The SUM OF 
SQUARES are computed from a set of equations that are derived from the four 
assumptions for the model and the observation data Yij.  The "degrees of freedom" 
correspond to the number of observations in a sample used to estimate a parameter minus 
the number of parameters that are being estimated for the same sample, (e.g., there are 

four αj means to estimate the average α effect.)  MEAN SQUARES is computed by 

dividing the sum of squares by the degrees of freedom in each row. 
 

 TABLE 2 - SINGLE FACTOR ANOVA EXAMPLE 

 
Source of Variation 

 
Sum of 
Squares 

 
Degrees 

of Freedom 

 
Mean 

Squares 

 
 F 

 
F 
 α = .05

 
Between aircraft types, αj 
 
Experimental error, εij 

 
1135.0 

 
203.2 

 
4-1=3 

 
20-3-1=16 

 
378.3 

 
12.7 

 

 
29.8 

 
3.24 

 

 
 Totals 

 
1338.2 

 
20-1=19 

 
 

 
 

 
 

 
 

The test statistic is the F value which is the ratio of mean squares for αj and εij.  The 
critical region in our example is the range of F values that are larger than the table F value 

for α = 0.05 and 3 degrees of freedom in the numerator and 16 degrees of freedom in the 

denominator.  Since F = 29.8 > 3.24, there is at least one statistically significant difference 
in aircraft types.  A casual look at the data in Table 1 re-confirms this statistical decision.  
The determination of which combinations of aircraft types are different from each other is 
discussed in a later section (after ANOVA).   
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B. Two Factors.  In an effort to further refine the experimental error (which is the 
yardstick by which to test for a significant effect from the levels of the test factors), a 
restriction may be added to the randomization in our single factor example problem model. 
 The "restriction" is to consider the effect that different aircrews may have on the measured 
variable.  Table 3 shows how the test would look if the restriction is made that every aircraft 
type must be used once by each of the five separate aircrews. The result of adding the 
restriction for aircrews is that the design is now a two factor design.  Equation (3) gives the 
model for our example with a second factor added: 

 

Yij = μ + αj + βi + εij            (3) 

Where: 

  βi represents the aircrew effect.   
 
TABLE 3 - TWO FACTOR DESIGN EXAMPLE PROBLEM 
    

 
Aircraft Type, αj 

 
 

Aircrew, βi  
I 

 
II 

 
III 

 
IV 

 

1 

2 

3 

4 

5 

 

43  (Y11) 

41  (Y21) 

53  (Y31) 

52  (Y41) 

55  (Y51) 

 

41  (Y12) 

45  (Y22) 

50  (Y32) 

53  (Y42) 

51  (Y52) 

 

38  (Y13) 

43  (Y23) 

45  (Y33) 

45  (Y43) 

48  (Y53) 

 

41  (Y14) 

37  (Y24) 

44  (Y34) 

44  (Y44) 

47  (Y54) 

 

Another way that the design may be described is to refer to the aircrews as 
"BLOCKS" and that the randomization is now restricted within blocks, (e.g., each aircrew 
must use each aircraft type but the test order is selected in a random manner).  Thus, 
another name for the design is "SINGLE FACTOR RANDOMIZED COMPLETE BLOCK 
DESIGN." 
 

The arrangement for the ANOVA table for our two factor example problem is shown 

in Table 4.  One can see that our original error term in the single factor design has now 
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been broken down into two components.  If there is a significant aircrew effect, then the 

original error term would have been large and there probably would have been difficulty in 

detecting any significant aircraft type level. 

 

 

TABLE 4  -  TWO FACTOR ANOVA EXAMPLE 
 

 
Source of Variation 

 
Sum of 
Squares 

 
Degrees of 
Freedom 

 
Mean 

Squares 

 
   F       F.05 

 

Between aircraft types, αj  
 
Between aircrews,  β1 

 
Experimental error,  εij 

 
 Totals 

    SSα 
 
 SSβ 

 
 SSε 

 
 SST 

 
 4 - 1 = 3 

(a - 1) 
 

 5-1=4 
(b - 1) 

 
 20-7-1=12
(a - 1)(b - 1) 
  

19 
ab - 1 

 
 SSα/3-MS 
 
 SSβ/4=MSβ 
 
 SSε/12=MS
ε 
  

 
MSα/MSε    3.49
 
MSβ/MSε    3.26 
 
 
 
 
  

 
A comparison between our single factor design and the two factor design illustrates 

an important principle in the DESIGN OF EXPERIMENTS.  In the single factor design, the 
aircrew effect is not in the design model; hence, the aircrew effect is confounded into the 
experimental error.  (This is acceptable when from previous experience there is strong 
reason to believe that the effect is negligible).  In the two factor design, the experimental 
error is more precisely estimated, (since the potential aircrew effect is identified) but has a 
corresponding decrease in the number of degrees of freedom, (i.e., 16 in the single factor 
example versus 12 in the two factor example). 
 
C. Latin Square.   A Latin Square design is one where each level of each factor is 
combined only once with each level of two other factors.  Consider our previous two factor 

design example and add a third factor (γk=1,2,3,4) that is the four different production lot 
groups from which are sent the missiles that are used in the test.  Further, to illustrate the 
Latin Square design, the number of levels of aircrews has been reduced from five to four.  
Table 5 shows the resultant 4 X 4 Latin Square design arrangement where each level of 
each factor occurs once and only once with each level of each of the other two factors. 
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Some of the freedom for randomization has been lost with the Latin Square design 
but not all of it.  For a given problem, one can select at random from tables that contain 
different Latin Squares design arrangements of the required size, (e.g., 4 x 4, 5 x 5). 
 

A serious consideration that must be given to the Latin Square design is that the 
interaction effects of the test factors are confounded into the experimental error term.  If 
there are interaction effects present in the test, the error term will be inflated and, thus, it 
will be difficult to detect other significant factor effects.  Hence, a critical decision must be 
prior to the selection of a Latin Square design for a test as to whether there is a strong 
likelihood that interaction effects will be present. 
 

TABLE 5  -  4 x 4 LATIN SQUARE DESIGN EXAMPLE 
 

 
 

 
AIRCRAFT TYPES, αj 

     I        II        III    IV 

 
 
 
  

 
    1 

 
γ1 

 
γ2 

 
γ3 

 
γ4 
 

 
 

 
    2 

 
γ4 

 
γ1 

 
γ2 

 
γ3 

 
Missile Production 
Lot Groups, γk     

 
Aircrews,     3 
     βI 

 
γ3 

 
γ4 

 
γ1 

 
γ2 

 
 

 
    4 

 
γ2 

 
γ3 

 
γ4 

 
γ1 
 

 
 

 
Equation (4) gives the model for our 4 X 4 Latin Square design example and Table 6 

 

Yijk = μ + αj + βi + γk + εijk          (4) 
 

shows the arrangements for the ANOVA table.  The critical region at an α = 0.05 is shown 
in the right column as defined by the F.05 with 3 and 6 degrees of freedom in numerator 
and denominator, respectively. 
 

There are several variations of the basic Latin Square design.  A GRAECO-LATIN 
SQUARE design is one that has four factors each of which has each of its levels appear 
once and only once with each level of each other factor.  Seldom is such a design useful 
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since there are so few degrees of freedom for estimating the experimental error term, and 
because adding factors increases the number of interactions that must be assumed 
negligible. 

 
A Latin Square design that doesn't have the same number of levels for each factor 

present in the design is called a YOUDEN SQUARE or incomplete Latin Square.  Such a 
design may be appropriate if there is a logical reason for a fewer number of levels for a 
factor, (e.g., there are only three aircraft types of test while there are four groups of 
aircrews and missile production lot groups). 

 
 

TABLE 6  -  4 x 4 LATIN SQUARE ANOVA EXAMPLE 
 
Source of Variation 

 
Sum of 
Squares 

 
Degrees of 
Freedom 

 
Mean 

Squares 

 
 
     Fs         F.05 

 
 
Between aircraft types, αj 
 
Between aircrews, βi 
 
Between missile groups, γk 
 
Experimental error, εijk 
 

 
 
 SSα 
 
 SSβ 
 
 SSγ 
 
 SSε 

 
 
4-1 = 3 
 
4-1 = 3 
 
4-1 = 3 
 
16-9-1 = 6 

 
 
SSα/3=MSα 
 
SSβ/3=MSβ 

 
SSγ/3=MSγ 
 
SSε/6=MSε 

 
 
MSα/MSε   4.76 
 
MSβ/MSε   4.76 
 
MSγ/MSε   4.76 
 
 

 
 Totals 
 

 
 SST 

 
15 

 
 

 
 

 
 
 
D. Factorial Designs.   

A FACTORIAL DESIGN is one that has all levels of a given factor combined with all 
levels of each other factor in the experiment.  The factorial design is the most commonly 
used design in OT&E; the reasons for this popularity are brought out in the following 
discussion. 

 
Consider an example of a factorial design which has the three factors that have been 

used in the previous examples:  aircraft types, aircrews, and missile production lot groups. 
 The test factor combinations are shown in Table 7.   



 
 
Test and Experimentation Designs   
        
               8 

 

TABLE 7  -  3 FACTORS, 2 REPLICATIONS FACTORIAL DESIGN EXAMPLE 
 
 

 
Aircraft Types, αj 

 
Aircrew 

    βi 

 
Missile Production 

Lots  γk 

 
Missile Production 

Lots  γk 

 
Missile Production 

Lots γk 

 
Missile Production 

Lots  γk 

 
 

 
γ1 

 
γ2 

 
γ1 

 
γ2 

 
γ1 

 
γ2 

 
γ1 

 
γ2 

 
1 

 
 Y 

 Y 

 
 Y 

 Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
2 

 
 Y 

 Y 

 
 Y 

 Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
3 

 
 Y 

 Y 

 
 Y 

 Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
4 

 
 Y 

 Y 

 
 Y 

 Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
5 

 
 Y 

 Y 

 
 Y 

 Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
Y 

Y 

 
There are two observations or replications in each cell in the matrix.  By taking two or 

more REPLICATIONS per cell (or combination set of test factors) the interaction effects 
between test factors may be tested and, also, separated out from the experimental error 
term.  The example presented in the discussion of the two factor design is a factorial 
design (the Latin Square design may be regarded as a special case of a factorial design); 
however, there is only one observation per cell and based upon previous knowledge it was 
assumed that there was no interaction between aircraft types and aircrews.  Hence, with 
this highly restrictive assumption, the previous two factor example problem is not a 
representative example of the general application of a factorial design. 
 The model for the factorial design example problem shown in Table 7 is given by 
Equation (5) 
 

Yijkl   = μ + αj + βi + γk + (αβ)ij + (αγ)jk + (βγ)ik + (αβγ)ijk + εl(ijk)      (5) 

 
where the terms in parenthesis represent the second and third order interactions between 
test factors and l(l=1,2) is the subscript that corresponds to the observation number within 
a cell.  Table 8 shows the ANOVA table for the example. 
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TABLE 8  -  FACTORIAL DESIGN EXAMPLE PROBLEM ANOVA TABLE 
 

Source of 
Variation 

 
Sum of 

Squares 

 
Degrees of 
Freedom 

 
Mean Squares 

 
 
 F 

 
 
 F.05 

 
Main Effects 
 
Between aircraft 
types, αj 
 
Between 
aircrews, βi 
 
Between missile 
groups, γk 
 
Interactions: 
 
 α X β 
 
 α X γ 
 
 β X γ 
 
 α X β X γ 
 
Experimental 
Error εl(ijk) 

 
 
 

SSα 

 

 

 

SSβ 
 
 

SSγ 

 

 

 

SSαβ 

 

SSαγ 

 

SSβγ 
 

SSαβγ 
 
 

SSε 

 
 
 

4-1=3 
 
 
 

5-1=4 
 
 

2-1=1 
 
 
 

3x4=12 
 

3x1=3 
 

4x1=4 
 

4x3x1=12 
 
 

80-39-1=40 
 

 

 
 
 

SSα/3 = MSα 
 
 
 

SSβ/4 = MSβ 
 
 
 

SSγ/1 = MSγ 
 
 

SSαβ/12 = MSαβ 
 

SSαγ/3 = MSαγ 

 

SSβγ/4 = MSβγ 
 

SSαβγ/12 = MSαβγ 
 
 

SSε/40 = MSε 

 
 
 

MSα/MSε 
 
 
 

MSβ/MSε 
 
 
 

MSγ/MSε 
 
 

MSαβ/MSε 
 

MS%γ/MSε 
 

MSβγ/MSε 
 

MS%βγ/MS
ε 
 
 

 
 
 

2.84 
 
 
 

2.61 
 
 
 

4.08 
 
 

2.00 
 

2.84 
 

2.61 
 

2.00 
 
 
 

 
 Totals 

 
 SST 

 
 79 

 
 

 
 

 
 

 
The principal reasons why the factorial design is used so often in OT&E are 

summarized: 
(1) Generally, an OT&E test program has ambitions goals to investigate the effect 

of several test factors on the response variable.  The factorial design permits 
the most efficient method to test several test factors (compared to a series of 
one-factor-at-a-time experiments). 

 
(2) Every observation is used to estimate an effect from each test factor.  Some 

level of each test factor is present in each observation. 
 
(3) The experimental error is estimated over a wide range of test conditions and, 

generally, there is an adequate sample size (degrees of freedom) available for 
its estimation. 
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(4) When there are two or more observations per cell, an isolation and estimation 

of possible interaction effects between test factors may be performed. 
 

E.  Other Designs.   
 

There are numerous other ANOVA designs that may be applied to OT&E test 
programs.  It is beyond the scope of this document to discuss the other designs in 
comprehensive detail.  A brief mention is made below of some of the principal designs that 
are employed in OT&E.  The test planner should consult with a statistician for the 
application of the proper statistical design. 
 

A FRACTIONAL FACTORIAL design is a factorial design that has an incomplete 
number of observations for at least on replication for the design matrix.  For example, if 
one or more of the observations were not available for the factorial design shown in Table 
7, the design would be referred to as fractional factorial.  Often, limited test resources 
and/or lack of interest for particular sets of combinations of test factors (cells) leads to 
fractional factorial test designs. 

 
Whether a test factor is fixed or random will influence the form and interpretation of the 

F-tests that are made to test for significant effects.  When all the levels of each factor in a 
design are fixed or set at pre-determined levels, the experiment has a fixed model.  When all 
levels of each factor in a design are chosen at random, the test has a random model.  When 
the design involves one or more factors that have their levels fixed and one or more factors 
that have their levels random, the experiment has a mixed model.  In the example problem 
displayed in Table 7, the aircraft type and missile production lot groups are fixed factors.  If 
the aircrews are chosen at random, then the test has a mixed model. 

 
There are test situations where there are test factors that are not factorial or crossed 

(taken in combination with) over all levels of each of the other test factors, (i.e., there is a 
test factor that is nested within, or are sub-samples of, levels of another factor).  When an 
experiment involves (1) test factors that are crossed (factorial) with other test factors and 
(2) test factors that are nested within levels of other test factors, it is referred to a nested-
factorial experiment. 
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Another example is a NESTED FACTORIAL design.  Each aircraft type has four 
missile launch racks.  However, the same four launch racks are not used on each aircraft 

type.  Thus, the launch rack effect, γk(j), is nested within the aircraft type factor.  It is 
important to recognize when a design has a nested rather than a factorial test factor since 
the experiment model and ANOVA table breakdown is different compared to a completely 
factorial design. 
 

There are many experimental situations where it is impractical to completely 

randomize the order of taking test observations among the levels of a test factor.  For 

example, consider an experiment where there is interest in testing the performance (in 

terms of "time-to-target-acquisition") of three difference radar types over four different 

target types and have three replications for each combination set of test factors.  To 

achieve a completely randomized two factor design, a radar type would be used with one 

of the target types to be identified and then another radar type/target type combination 

would be selected at random for the next observation, and so on ….  Such an experiment 

would entail flying for 36 separate combinations of radar type/target conditions. 



 
 
Test and Experimentation Designs    
          
            12 

 

 

t – Tables 
ν\α .005 .01 .025 .05 .10 .20 .25 .30 .40 .45

1 63.66 31.82 12.71 6.31 3.08 1.376 1.000 .727 .325 .158 

2   9.92   6.96   4.30 2.92 1.89 1.061   .816 .617 .289 .142 

3   5.84   4.54   3.18 2.35 1.64   .978   .765 .584 .277 .137 

4   4.60   3.75   2.78 2.13 1.53   .941   .741 .569 .271 .134 

5   4.03   3.36   2.57 2.02 1.48   .920   .727 .558 .267 .132 
6   3.71   3.14   2.45 1.94 1.44   .906   .718 .553 .265 .131 

7   3.50   3.00   2.36 1.90 1.42   .896   .711 .549 .263 .130 

8   3.36   2.90   2.31 1.86 1.40   .889   .706 .546 .262 .130 

9   3.25   2.32   2.26 1.83 1.38   .883   .703 .543 .261 .129 

10   3.17   2.76   2.23 1.81 1.37   .879   .700 .542 .260 .129 

11   3.11   2.72   2.20 1.80 1.36   .876   .697 .540 .260 .129 

12   3.06   2.68   2.18 1.78 1.36   .873   .695 .539 .259 .128 

13   3.01   2.65   2.16 1.77 1.35   .870   .694 .538 .259 .128 

14   2.98   2.62   2.14 1.76 1.34   .868   .692 .537 .258 .128 

15   2.95   2.60   2.13 1.75 1.34   .866   .691 .536 .258 .128 

16   2.92   2.58   2.12  1.75 1.34   .865   .690 .535 .258 .128 

17   2.90   2.57   2.11 1.74 1.33   .863   .689 .534 .257 .128 

18   2.88   2.56   2.10 1.73 1.33   .862   .688 .534 .257 .127 

19   2.86   2.54   2.09 1.73 1.33   .861   .688 .533 .257 .127 

20   2.84   2.53   2.09 1.72 1.32   .860   .687 .533 .257 .127 
21   2.83   2.52   2.08 1.72 1.32   .859   .686 .532 .257 .127 

22   2.82   2.51   2.07 1.72 1.32   .858   .686 .532 .256 .127 

23   2.81   2.50   2.07 1.71 1.32   .858   .685 .532 .256 .127 

24   2.80   2.49   2.06 1.71 1.32   .857   .685 .531 .256 .127 

25   2.79   2.48   2.06 1.71 1.32   .856   .684 .531 .256 .127 

26   2.78   2.48   2.06 1.71 1.32   .856   .684 .531 .256 .127 

27   2.77   2.47   2.05 1.70 1.31   .855   .684 .531 .256 .127 

28   2.76   2.47   2.05 1.70 1.31   .855   .683 .530 .256 .127 

29   2.76   2.46   2.04 1.70 1.31   .854   .683 .530 .256 .127 

30+   2.58   2.33   1.96 1.645 1.28   .842   .674 .524 .253 .126 

ν/α .005 .01 .025 .05 .10 .20 .25 .30 .40 .45 
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V2  = 
Degrees 

of 
freedom 

for 
denom-
inator 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251 252 253 254
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5
3 10.10 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.38 2.38 2.30 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 3.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.93
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25

3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00∞

VALUES OF  F .05*
V 1 = Degrees of freedom from numerator

∞


